Shaft Couplings

Backlash-free Torque **Transmission** Compensation of Shaft Misalignment

IMG.900.V06.GB

mayr[®]-your reliable partner

What is your definition of reliability?

We define reliability as the highest product quality and competent service from the initial contact right up to the after-sale service

- Largest variety in selection of standard products
- Market leader's competence arising from decades of experience in the development, production and application of power transmission products
- Optimum product selection due to our expertise in design and calculation
- □ Reliable component dimensioning
- □ Intelligent platform (modular construction)
- □ High flexibility for individual requests and customer-tailored solutions
- Quality-inspected suppliers
- D Modern, highly robust materials
- □ 100% quality control
- □ Certified according to DIN EN ISO 9001:2000
- D Personal supervision from the first contact right up to the after-sale service
- □ Worldwide local service network
- CAD-files available online to save time and costs during construction
- □ 24-hour delivery service for preferred products
- □ Short delivery times and on-time delivery
- D Unlimited replacement part availability worldwide

A Worldwide Presence

Our Sales and Service network is constantly expanding. We guarantee you and your customers almost all over the world local representation. With eight branch firms in France, Switzerland, Italy, England, Poland, the USA, Singapore and China as well as around 30 representatives and eight subsidiaries in Germany, we provide local service for our customers in all important industrial areas.

Total Quality Management

Product Quality

Every delivery which leaves our firm has been subjected to a careful quality inspection, meaning that you are able to rely 100 % on $mayr^{\circledast}$ products. If required, we pre-adjust our clutches and brakes accurately to the requested values and confirm the product characteristics with an Inspection Report.

Quality Management

mayr[®] uses the term quality to describe its products and services. Certification of our quality management confirms the quality-consciousness of our colleagues at every level of the company.

Our integrated management system is certified according to DIN EN ISO 9001:2000 (Quality) and DIN EN ISO 14001 (Environment) and complies with the OHSAS 18001/OHRIS (Occupational Health and Safety) demands.

Individual and Flexible Logistics

Flexible and optimally qualified colleagues ensure that your order is delivered according to schedule and with the most appropriate delivery method. We take into account your individual packaging and dispatch regulations as a matter of course. Our modern high rack warehouse has a permanently available stock of our wide standard product selection.

And if you are really in a hurry, simply use our uniquely-quick basic product delivery service!

Construction and Development

Innovations for Your Success

With our innovative and economical solutions, we are able to set new records in the field of power transmission. Our many worldwide patents prove our constant ambition of developing better and technologically superior products.

Highly qualified engineers, high-performance 3D-CADsystems and the most up-to-date FEM calculation aids used in our Development and Construction departments mean that our business is perfectly equipped to offer our customers effective solutions.

Experts for all Power Transmission Questions

Exploit our know-how, gained by decades of experience in the development, production and application of drive technology products. Our experts in Construction and Development are happy to advise you personally and competently when selecting and dimensioning the drive solution you require.

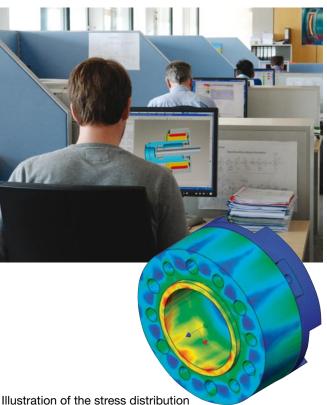
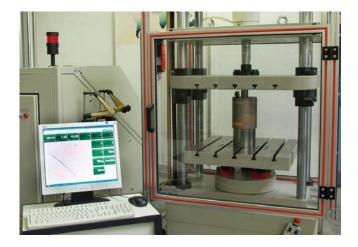


Illustration of the stress distribution in a backlash-free shaft connection

From Prototype to Finished Product


No mayr[®] product is released onto the market until it has proved its functional capabilities and reliability in extreme, long-term tests.

The spectrum of testing equipment is as varied as our range of products:

- Friction work test stands
- Wear test stands
- Noise measurement room with highly accurate noise measurement inspection devices
- □ Torque measurement stands up to 200.000 Nm
- □ Impact and alternating load test stands
- Force test stands
- Linear movement test stands
- Continuous performance test stands
- Magnetic flow measurement test stands
- □ High-speed test stands up to 20.000 rpm
- Misalignment and angular misalignment test stands
- Load and measurement test stands for DC motors

Product Data: Our 24-hour Service

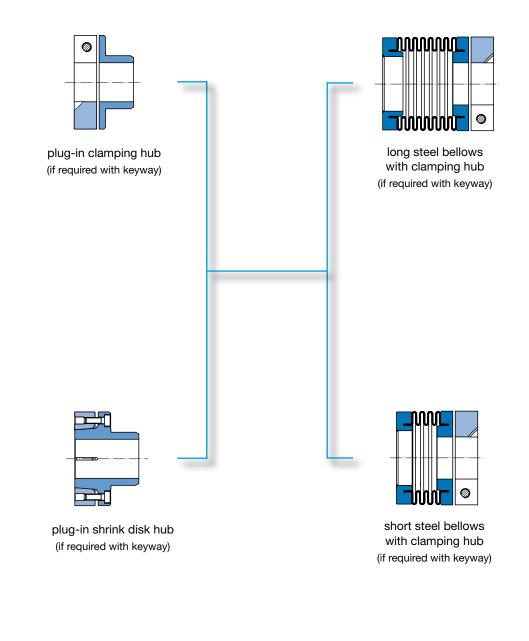
Our website offers you detailed information 24 hours per day, 365 days per year with no delays. Here you can find not only the latest catalogues and technical documentation but also CAD-files for cost-saving construction of our products.

Unsurpassed -Our Standard Programme

For safety clutches, safety brakes, backlash-free shaft couplings and high-quality DC drives, we offer you a complete product range with market and branch optimised constructions and designs.

The Optimum Shaft Coupling for every Drive

Each drive has its own specific characteristics and therefore places different demands on the couplings which transmit the torque from one shaft to the second and which compensate for the resulting shaft misalignments. In most cases only backlash-free couplings are able to meet the requirements for high-speed, dynamic or reversing precision drives. *mayr*[®] power transmission has three of the most established and most attractive backlash-free shaft couplings in its programme:


- Disk pack couplings,
- Steel bellows couplings and
- Elastomer couplings

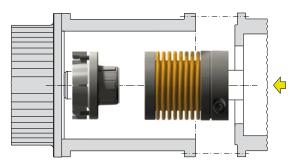
Therefore, $mayr^{\otimes}$ offers an optimum solution for many different drives.

Overview: Backlash-free Shaft Couplings Types, Designs, Characteristics

Image: Normal torque range in NmImage: Normal torque range in NmImage: Normal torque range in NmImage: Normal torque range in Nm24 - 120 $35 - 150$ $16 - 700$ $4 - 1040$ $190 - 24000$ $190 - 1600$ $22000 - 110$ Max. permitted speed in rpm 3600 22500 10000 28000 13600 9500 3600 Shaft diameter in mm $10 - 45$ $8 - 85$ $6 - 80$ $14 - 170$ $14 - 110$ on reque $10 - 45$ $10 - 45$ $8 - 85$ $6 - 80$ $14 - 170$ $14 - 110$ on reque $10 - 45$ $10 - 120$ 100 250 70 250 Torsionally rigid x Vibration damping x Can be combined with safety clutch x Can be integrated with torque measurement x x x x x Distance between shaft ends x x x x x	primeflex Steel bellows couplings	ROBA [®] -DS Servo couplings	smartflex [®] Steel bellows couplings	ROBA [®] -ES Elastomer couplings	ROBA [®] -DS All-steel couplings	EAS [®] -control-DS Torque measure- ment couplings	ROBA [®] -DS All-steel couplings
Image: Normal log of the state is a state in the state in the state is a state in the state in the state is a state in the state	Page 6	Page 8	Page 10	Page 12	Page 14	Page 16	Page 18
Steel bellows Disk pack Steel bellows Plastic element Disk pack Disk pack </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Nominal torque range in Nm 24 - 120 35 - 150 16 - 700 4 - 1040 190 - 24000 190 - 1600 22000 - 110 Max. permitted speed in rpm 3600 22500 10000 28000 13600 9500 3600 Staft diameter in mm 3600 22500 10000 28000 13600 9500 3600 Max. permitted speed in rpm 8 - 85 6 - 80 14 - 170 14 - 110 on reque Max. permanent operation temp. in °C 120 100 250 70 250 Torsionally rigid x x x x x x x X x x x x x x x x Max. permanent operation temp. in °C x x x x x x x x Yorsionally rigid x x x x x x x x Can be combined with safety clutch x x x x x x							
24 - 120 35 - 150 16 - 700 4 - 1040 190 - 24000 190 - 1600 22000 - 110 Max. permitted speed in rpm 8000 22500 10000 28000 13600 9500 3600 10 - 45 10 - 45 8 - 85 6 - 80 14 - 170 14 - 110 on reque Max. permanent operation temp. in °C 120 100 250 70 250 Torsionally rigid x X X X X X X X X X X X X X Vibration damping		•	Steel bellows	Plastic element	Disk pack	Disk pack	Disk pack
Max. permitted speed in rpm Note of the second secon	•	•					
8000 22500 10000 28000 13600 9500 3600 Shaft diameter in mm 10 - 45 10 - 45 8 - 85 6 - 80 14 - 170 14 - 110 on reque Max. permanent operation temp. in °C 120 100 120 100 250 70 250 Torsionally rigid x x x x x x x X X X X X X X X Torsionally rigid			16 - 700	4 - 1040	190 - 24000	190 -1600	22000 - 110000
Shaft diameter in mm 10 - 45 10 - 45 8 - 85 6 - 80 14 - 170 14 - 110 on requestion requestion remp. in °C Max. permanent operation temp. in °C 20 100 120 100 250 70 250 Torsionally rigid x X X X X X X Vibration damping X X X X X X X X Vibration damping X <		-	10000		10000		
10 - 45 10 - 45 8 - 85 6 - 80 14 - 170 14 - 110 on reque Max. permanent operation temp. in °C 20 100 120 100 250 70 250 Torsionally rigid X <t< td=""><td></td><td></td><td>10000</td><td>28000</td><td>13600</td><td>9500</td><td>3600</td></t<>			10000	28000	13600	9500	3600
Max. permanent operation temp. in °C 120 100 120 100 250 70 250 Torsionally rigid X <td></td> <td></td> <td>0 05</td> <td>6 90</td> <td>1/ 170</td> <td>14 110</td> <td>on request</td>			0 05	6 90	1/ 170	14 110	on request
120 100 120 100 250 70 250 Torsionally rigid X </td <td></td> <td></td> <td></td> <td>0 - 80</td> <td>14 - 170</td> <td>14 - 110</td> <td>on request</td>				0 - 80	14 - 170	14 - 110	on request
Torsionally rigidxxxxxTorsionally flexibleConsider dempingVibration dampingCan be combined with safety clutchxxxxXxxxCan be combined with safety clutchxxxxXxxxCan be integrated with torque measurementxxgraduatedgraduatedfixedvariablegraduatedgraduatedfixedvariablesingle-joint designxxxxxxxxShaft misalignment compensation axialxxxShaft misalignment compensation angularxxxXXXXXDouble-joint designxXXXXXXX				100	250	70	250
xxxxxxTorsionally flexibleTorsionally flexibleVibration dampingXXXXXXXCan be combined with safety clutchxxxXXXXXXXCan be integrated with torque measurementXXXXXSingle-joint designXXXSingle-joint designXXXShaft misalignment compensation axialXXXShaft misalignment compensation radialXXXXShaft misalignment compensation radialXXXXXXXXXXXXX		100	120	100	230	10	230
Torsionally flexibleXXXXXXXXXXXXXXXXXXXXXXColspan="4">XXXXXDistance between shaft endsGraduatedfixedvariablefixedvariableSingle-joint designXXXXShaft misalignment compensation axialXXXXShaft misalignment compensation axialXXXXShaft misalignment compensation angularXXXXShaft misalignment compensation angularXXXXXXXXXXXX		Y	¥		Y	x	¥
XXXVibration dampingVibration dampingXXXXXXXXXXXXXXXXXXXXXXDistance between shaft endsSingle-joint designXXXXSingle-joint designXXXXShaft misalignment compensation axialXXXXShaft misalignment compensation axialXXXXShaft misalignment compensation axialXXXXXXXXXXXX			×		, A	~	~
XXXXXXXXXXXCan be integrated with torque measurementXXXXCan be integrated with torque measurementXXXXDistance between shaft endsXXXXgraduatedvariablegraduatedfixedvariablefixedvariablegraduatedvariablegraduatedfixedvariablefixedvariableSingle-joint designXXXXXX* Shaft misalignment compensation radiaXXXXX* Shaft misalignment compensation radiaXXXXX* Shaft misalignment compensation angularXXXXX* Shaft misalignment compensation angularXXX <t< td=""><td>Tororonally noxible</td><td>•</td><td></td><td>х</td><td></td><td></td><td></td></t<>	Tororonally noxible	•		х			
XXXXXXXXXXXCan be integrated with torque measurementXXXXCan be integrated with torque measurementXXXXDistance between shaft endsXXXXgraduatedvariablegraduatedfixedvariablefixedvariablegraduatedvariablegraduatedfixedvariablefixedvariableSingle-joint designXXXXXX* Shaft misalignment compensation radiaXXXXX* Shaft misalignment compensation radiaXXXXX* Shaft misalignment compensation angularXXXXX* Shaft misalignment compensation angularXXX <t< td=""><td>Vibration damping</td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	Vibration damping	1					
xxxxxxCan be integrated with torque measurementCan be integrated with torque measurementxxxDistance between shaft endsxxxxgraduatedvariablegraduatedfixedvariablefixedvariablegraduatedvariablegraduatedfixedvariablefixedvariableSingle-joint designxxxxxx*xxxxxx*Shaft misalignment compensation axialxxxxx*xxxxxxxDouble-joint designxxxxxx*xxxxxxx		, 		х			
Can be integrated with torque measurementCan be integrated with torque measurementXXXDistance between shaft endsXXXXGraduatedvariablegraduatedfixedfixedvariablegraduatedvariablegraduatedfixedfixedvariableSingle-joint designXXXXXShaft misalignment compensation axialXXXXShaft misalignment compensation radialXXXXShaft misalignment compensation angularXXXXDouble-joint designXXXXX	Can be combined	with safety clutch					
kxxxDistance between shaft endsgraduatedvariablegraduatedfixedvariablegraduatedvariablefixedvariablevariableSingle-joint designXXXXXShaft misalignment compensation axialXXXXXShaft misalignment compensation radialShaft misalignment compensation radialXXXXShaft misalignment compensation radialShaft misalignment compensation axialXXXXDouble-joint designXXXXX	Х	x	х	х	х		х
Distance between shaft endsgraduatedvariablegraduatedfixedvariablegraduatedvariablefixedvariablevariableSingle-joint designXXXXXXXXXXShaft misalignment compensation axialXXXXShaft misalignment compensation radialXXXXShaft misalignment compensation angularXXXXShaft misalignment compensation angularXXXXShaft misalignment compensation angularXXXXXXXXXX	Can be integrated w	ith torque measuren	nent				
graduatedvariablegraduatedfixedvariablefixedvariableSingle-joint designXXXXXShaft misalignment compensation axialXXXXXXXXXXShaft misalignment compensation radialXXXXShaft misalignment compensation radialXXXXShaft misalignment compensation radialXXXXShaft misalignment compensation angularXXXXShaft misalignment compensation angularXXXX					х		х
Single-joint design X X X X X X • Shaft misalignment compensation axial X X X X X • Shaft misalignment compensation radial X X X X X • Shaft misalignment compensation radial X X X X X • Shaft misalignment compensation angular X X X X X • Shaft misalignment compensation angular X X X X X • Shaft misalignment compensation angular X X X X X • Shaft misalignment compensation angular X X X X X • Shaft misalignment compensation angular X X X X X X • Shaft misalignment compensation angular X X X X X X X • Shaft misalignment compensation angular X X X X X X X X X X X X X X X X X X	Distance between	shaft ends					
x x x x x Shaft misalignment compensation axial X X X X Shaft misalignment compensation radial X X X X Shaft misalignment compensation radial X X X X Shaft misalignment compensation angular X X X X Shaft misalignment compensation angular X X X X Double-joint design X X X X X	graduated	variable	graduated	fixed	variable	fixed	variable
 Shaft misalignment compensation axial X X X Shaft misalignment compensation radial X Shaft misalignment compensation angular Shaft misalignment compensation angular Shaft misalignment compensation angular X X	Single-joint design	n					
x x x x x • Shaft misalignment compensation radial Image: Company of the second se				Х	Х		Х
• Shaft misalignment compensation radial • Shaft misalignment compensation angular • Shaft misalignment compensation angular • X X X • X X X • X X X • X X X • X X X	 Shaft misalignmer 		ial				
x x x x • Shaft misalignment compensation angular x x x x x x x x x x x x x x x x	.			Х	Х		Х
 Shaft misalignment compensation angular x 	 Shaft misalignmer 	nt compensation rac	dial				
XXXXDouble-joint designXXXXXXXX	• Choft mineling		aular.	X			
Double-joint design X			guiar	Y	Y.		N/
X X X X X X X X X	Double-joint dooin			Å	X		X
			v		v	v	v
					^	^	^
X X X X X X X X	-	•			x	x	x
Shaft misalignment compensation radial					~	^	~
	J. J	•			х	х	х
Shaft misalignment compensation angular							
x x x x x x x x	-	•			х	х	Х
ATEX design acc. 94/9 EC	ATEX design acc.						
X X X	-			Х	x		
Product catalogue P.933.VGB K.950.VGB K.932.VGB K.940.VGB K.950.VGB P.950000.V_			K.932.V .GB	K.940.V .GB	K.950.V .GB	K.950.V .GB	P.950000.VGB

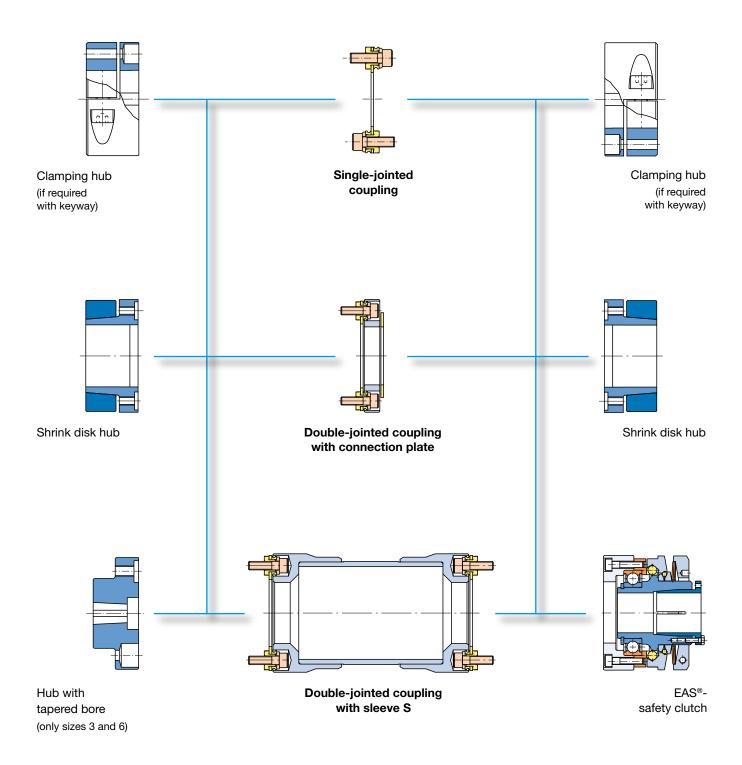
According to German notation, decimal points in this catalogue are represented with a comma (e.g. 0,5 instead of 0.5). We reserve the right to make dimensional and constructional alterations.

For detailed information, detailed technical data and dimensions, please see our product catalogue P.933.V_ _.GB.



- Plug-in connection
- Backlash-free
- Can be de-installed even after longer operating periods without damaging the steel bellows
- Extremely compact and very high performance density
- Easy to install via clamping or shrink disk connections
- Frictionally-locking and positive-locking shaft-hub connections
- Excellent misalignment capability
- Can be variably dimensioned via the modular system
- Cost-effective

Installation Example



The primeflex[®]-steel bellows coupling transmits the torque backlash-free between the motor shaft and the gear shaft. By applying plug-in shrink disk hubs (see Installation Example) or plug-in clamping hubs, the primeflex[®]-steel bellows couplings can be mounted in areas which are difficult to access.

Taa	hnical Data	Dimensions				Size	
Tec	ninical Data,	Dimensions			1	2	3
Nom	Nominal torque		T _{KN}	[Nm]	24	60	120
Oute	Outer diameter			[mm]	47	60	79
ą	Minimum bor	e		[mm]	12	19	25
Clamping hub	Maximum bo	re		[mm]	25	35	45
pinç	Maximum spe	eed	n _{max}	[rpm]	8000	6000	4000
am	Longth	long steel bellows		[mm]	77	93	117
Ö	Length	short steel bellows		[mm]	62	74	92
	Axial	long steel bellows	ΔK_a	[mm]	0,2	0,25	0,25
a '	displacement	short steel bellows	ΔK_a	[mm]	0,1	0,15	0,15
Permitted ¹⁾ iisalignment	Radial	long steel bellows	ΔK_r	[mm]	0,2	0,3	0,3
i mi aligi	misalignment	short steel bellows	ΔK_r	[mm]	0,1	0,1	0,1
Permitted ¹⁾ misalignments	Angular	long steel bellows	ΔK_{w}	[°]	1	1	1
-	misalignment	short steel bellows	ΔK_w	[°]	1	1	1
Torsi	onal	long steel bellows	C _T	[10 ³ Nm/rad]	9	22	50
sprin	g rigidity	short steel bellows	C _T	[10 ³ Nm/rad]	18	44	100

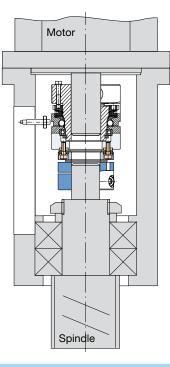
1) The permitted misalignments must not simultaneously reach their max. value.

For detailed information, detailed technical data and dimensions, please see our product catalogue K.950.V_ _.GB.

This catalogue is also available for download as a pdf file on our website www.mayr.com.

8

mayr®


Characteristics and Advantages

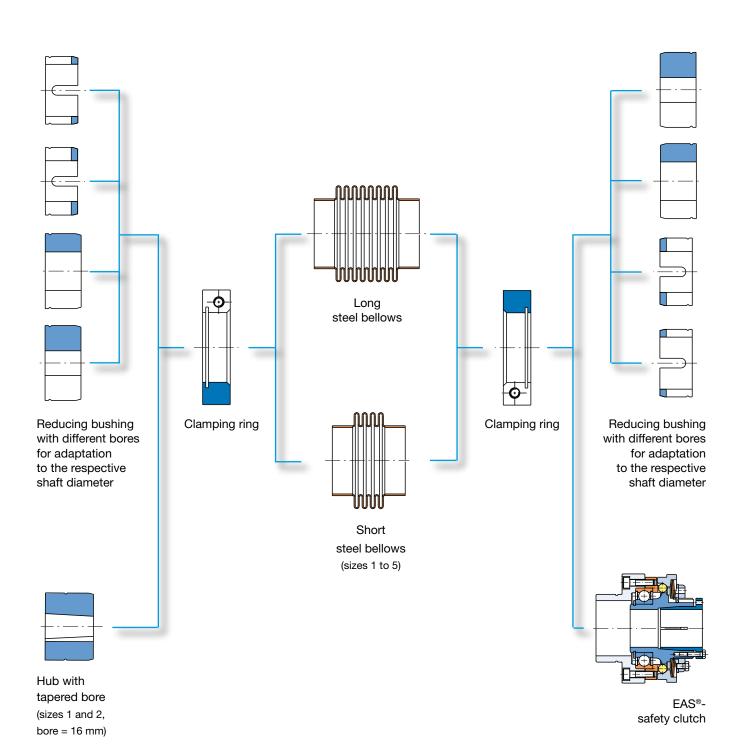
- ROBA®-DS servo couplings are made of steel and highstrength aluminium alloys – the basis of these extremely compact designs.
- Due to their high performance density, they transmit high torques at comparably low volumes.
- Their low mass moment of inertia also predestines ROBA®-DS servo couplings for highly dynamic drive systems with high speeds.
- The flexible disk pack compensates for shaft misalignments and transmits the torque backlash-free with a high torsional rigidity.
- ROBA®-DS servo couplings are absolutely wear-free and maintenance-free.

Installation Example

ROBA®-DS shaft coupling combined with an EAS®safety clutch. Backlash-free and torsionally rigid torque transmission between the motor shaft and the spindle shaft. Compensation of axial, radial and angular misalignments.

Technical Data, Dimensions					Size							
Tec	fillical Data, D				3	6	10	15				
Nominal torque ¹⁾		T _{KN}	[Nm]	35	60	100	150					
Peak torque ²⁾		Τ _{κs}	[Nm]	52	90	150	225					
Alter	nating torque		Τ _{κw}	[Nm]	21	36	60	90				
Oute	er diameter			[mm]	45	56	69	79				
qnq	Minimum bore			[mm]	10	14	19	25				
g ht	Maximum bore			[mm]	20	28	35	42				
Clamping	Maximum speed ³⁾		n _{max}	[rpm]	13500	10800	9000	7800				
am	E Length single-jointed coupling			[mm]	48,5	52,6	67	69,9				
Ö	Min. length dou	ble-jointed coupling		[mm]	59	64,7	79,5	82,8				
∣ ⁴) ents	Axial displaceme	nt ^{5) 6)}	ΔK_a	[mm]	0,5	0,7	0,9	1,1				
Permitted ⁴⁾ misalignments	Radial	with connection plate	ΔK_r	[mm]	0,15	0,15	0,2	0,2				
ermi alig	⁵ misalignment ⁵ with special sleeve ΔK_{rH}		[mm]		Please contact t	he manufacturer.						
P.	$\Delta \overset{s}{=}$ Angular misalignment per disk pack ΔK_{w} [°]			1,0	1,0	1,0	1,0					
Torsi	onal spring rigidit	y disk pack	C _{T LP}	[10 ³ Nm/rad]	17	35	60	145				

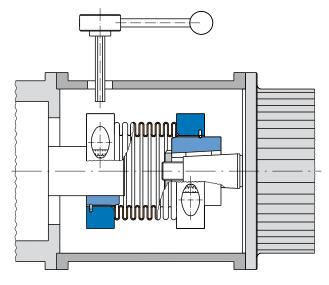
1) Valid for max. permitted shaft misalignments.


2) Valid for constant load direction, max. load cycles $\leq 10^5$.

3) Not valid for coupling with special sleeve.

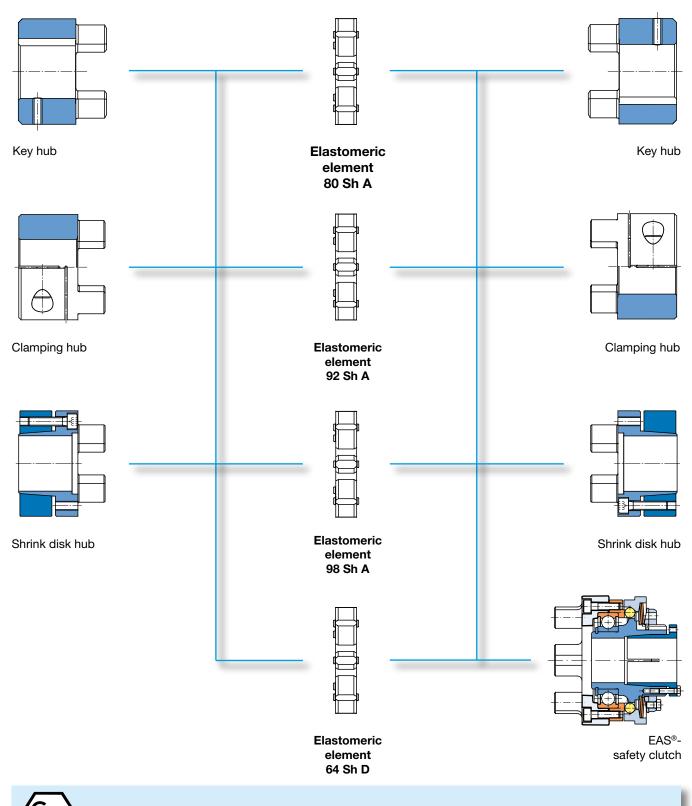
4) The permitted misalignments must not simultaneously reach their max. value.5) The values refer to couplings with 2 disk packs.

6) Only permitted as a static or virtually static value.


For detailed information, detailed technical data and dimensions, please see our product catalogue K.932.V_ _.GB.

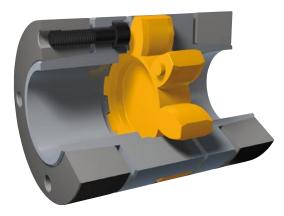
- smartflex[®]-steel bellows couplings compensate for axial, angular and radial shaft misalignments.
- Backlash-free shaft attachment, backlash-free torque transmission and high torsional rigidity provide high precision in the drive line.
- The easy and fast shaft attachment saves installation time.
- Due to the ingeniously simple set-up, the priceperformance ratio is extremely advantageous.
- On radial misalignment, the misalignment capability of smartflex[®]-couplings is up to three times higher than the misalignment capability of common steel bellows couplings.
- The high misalignment capability eliminates the most common accident cause on previous generations of steel bellows.
- A flexible modular structure minimises storage and provides high availability.

Installation Example

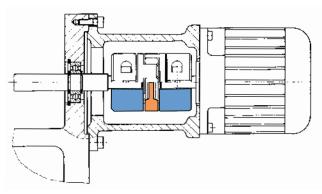

By applying clamping ring hubs, the smartflex[®]-steel bellows couplings can be mounted in areas which are difficult to access. Please provide an opening in the bell housing for the Allen wrench as depicted in the example.

Taa	hnical Data	imonoiono			Size								
Tec	hnical Data, D	amensions			0	1	2	3	4	5			
Nom	inal torque		T _{KN}	[Nm]	16	40	100	200	400	700			
Oute	r diameter			[mm]	46	57	72	94	118	146			
	Minimum bore			[mm]	8	11	16	18	30	40			
ing 1g	Maximum bore			[mm]	19	25	36	50	62	85			
duc	Maximum bore Maximum speed long steel bellows		n _{max}	[rpm]	10000	8000	6000	4000	3000	2500			
Bu bu	long steel bellows		[mm]	49,5	59,3	72	90,3	115	124				
	Length	short steel bellows		[mm]	-	43,7	52,5	65,6	87	98			
	Axial	long steel bellows	ΔK_a	[mm]	0,4	0,6	0,8	0,8	0,8	0,6			
l ¹) ents	displacement	short steel bellows	ΔK_a	[mm]	-	0,3	0,4	0,4	0,6	0,6			
Permitted ¹⁾ misalignments	Radial	long steel bellows	ΔK_r	[mm]	0,3	0,4	0,5	0,5	0,5	0,5			
rmi	misalignment	short steel bellows	ΔK_r	[mm]	-	0,1	0,1	0,1	0,1	0,1			
Pe	Angular	long steel bellows	ΔK_w	[°]	3	3	3	3	1,5	1,0			
misalignment	misalignment	short steel bellows	ΔK_w	[°]	-	1,5	1,5	1,5	1,2	1,0			
Torsi	ional spring	long steel bellows	C _T	[10 ³ Nm/rad]	4	9	22	50	125	305			
· · · · · · · · · · · · · · · · · · ·		short steel bellows	C _T	[10 ³ Nm/rad]	-	18	44	100	168	380			

1) The permitted misalignments must not simultaneously reach their max. value.

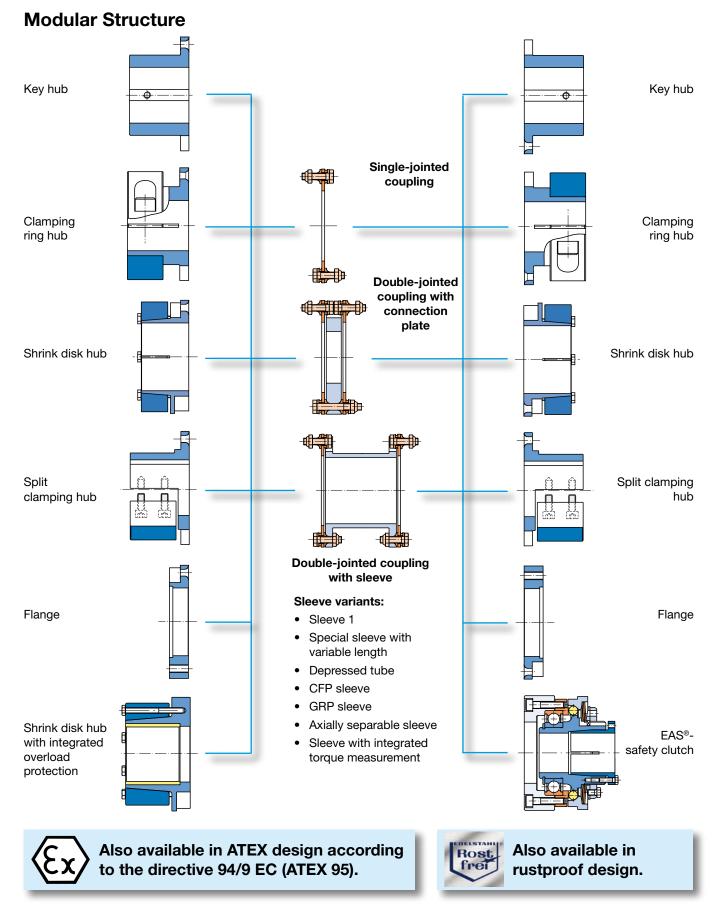

Also available in ATEX design according to the directive 94/9 EC (ATEX 95).

For detailed information, detailed technical data and dimensions, please see our product catalogue K.940.V_ _.GB.


- ROBA[®]-ES couplings transmit the torque backlash-free via pre-tensioned elastomer elements and compensate for shaft misalignments.
- Rigidity and damping behaviour are variable due to four elastomeric elements per size in different Shore hardnesses.
- ROBA[®]-ES elastomer couplings are insertable and are, therefore, also suitable for blind installation.
- The couplings are maintenance-free, media-resistant and temperature-resistant. This guarantees the highest operational safety.
- ROBA[®]-ES couplings are torsionally flexible within narrow areas. However, in comparison to the toothed belt drive, their rigidity is still 2 to 4 times higher.

may

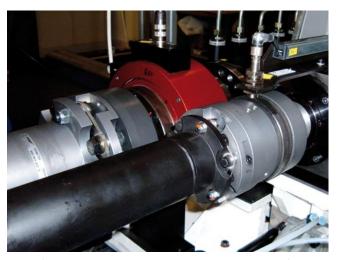
Installation Example



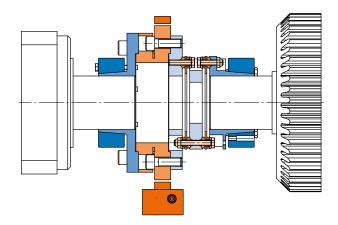
The ROBA[®]-ES shaft coupling transmits the torque backlashfree between the motor shaft and the output shaft. It also compensates for axial, radial and angular shaft misalignments.

Tool	nical Data Di	monoiono							Size				
Teci	nnical Data, Di	mensions			14	19	24	28	38	42	48	55	65
Nominal torque Elastomeric element hardness 98 Sh A		Τ _{κΝ}	[Nm]	13	17	60	160	325	450	525	685	1040	
Peak torque Elastomeric element hardness 98 Sh A		Τ _{κs}	[Nm]	26	34	120	320	650	900	1050	1370	2080	
Alternating torque Elastomeric element hardness 98 Sh A T _{KW} [Nm]					See coupling dimensioning in the current ROBA®-ES catalogue.) .
Outer diameter [mm]					30	40	55	65	80	95	105	120	135
sk	Minimum bore			[mm]	6	10	15	19	20	28	35	40	45
nk di	Maximum bore			[mm]	14	20	28	38	45	50	60	70	75
Shrink disk hub	Maximum speed		n _{max}	[rpm]	28000	21000	15500	13200	10500	9000	8000	6300	5600
ъ	Length			[mm]	50	66	78	90	114	126	140	160	185
ent Sh A		axial	ΔK_{a}	[mm]	1,0	1,2	1,4	1,5	1,8	2,0	2,1	2,2	2,6
E 8 misalignment ¹⁾	radial	ΔK _r	[mm]	0,09	0,06	0,1	0,11	0,12	0,14	0,16	0,17	0,18	
	angular	ΔK_w	[°]	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	
Elast. el hardness		static	C _{T stat.}	[10 ³ Nm/rad]	0,12	0,9	3,7	4,2	7,4	13,8	15,1	20,5	32,8
rigidity	dynamic	C _{T dyn.}	[10 ³ Nm/rad]	0,3	2,2	7,6	10,1	19,9	31,1	44,9	48,2	67,4	

1) The permitted misalignments must not simultaneously reach their max. value.



For detailed information, detailed technical data and dimensions, please see our product catalogue K.950.V_ _.GB.


- ROBA[®]-DS couplings are not sensitive to alternating loads up to the full nominal torque.
- Due to their high performance density, they have a low mass moment of inertia.
- ROBA[®]-DS disk pack couplings transmit the torque absolutely backlash-free and with a constantly high torsional rigidity up to the nominal torque.
- On ROBA[®]-DS couplings, the full nominal torque can be used, even on alternating torques and shaft misalignments.
- They have a high misalignment capability with low restoring forces.
- ROBA[®]-DS couplings are extremely robust and can therefore be used even under difficult conditions.
- The high variant variety permits optimum coupling configuration.

ROBA[®]-DS shaft coupling combined with an EAS[®]-safety clutch in a gear test stand manufactured by the company EGM (Entwicklungsgesellschaft für Montagetechnik GmbH, Hannover).

Installation Example

By using special adaptor flanges, different measurement flanges (for torque measurement) can be integrated into ROBA®-DS couplings.

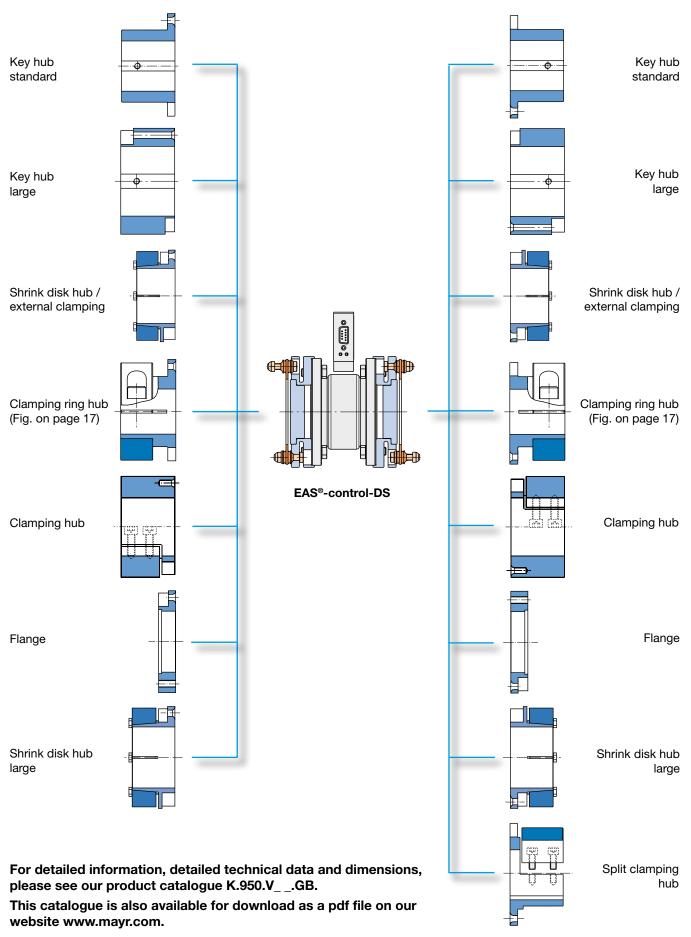
Tool	hnical Data	Dimonoiono								Si	ze					
Teci	hnical Data,	Dimensions			16	25	40	64	100	160	180	300	500	850	1400	2200
Nom	inal torque ¹⁾		T _{KN}	[Nm]	190	290	450	720	1000	1600	2100	3500	5800	9500	15000	24000
Peak	torque ²⁾		Τ _{κs}	[Nm]	285	435	675	1080	1500	2400	3150	5250	8700	14250	22500	36000
		[mm]	77	89	104	123	143	167	143	167	198	234	274	314		
	Minimum bore	;		[mm]	14	20	25	30	35	40	42	50	60	70	80	100
¥ g	Maximum bor	e		[mm]	45	52	60	70	90	100	75	85	100	120	140	170
Shrink disk hub	Maximum speed ³⁾		n _{max}	[rpm]	13600	11800	10100	8500	7300	6200	7300	6200	5200	4400	3800	3300
dis SI	Min. length single-jointed coupling			[mm]	77,1	87,2	98,4	109,6	120	131,6	141,2	161,2	202	244	276	317,8
	Min. length do	uble-jointed coupling		[mm]	96,2	106,4	120,8	137,2	148	165,2	172,4	194,4	242	295	334	383,6
4) nts	Axial displacem	1ent ^{5) 6)}	ΔK_a	[mm]	1,1	1,3	1,5	1,8	2,1	2,5	1,0	1,2	1,4	1,6	1,9	2,2
		with connection plate	ΔK _r	[mm]	0,3	0,3	0,4	0,45	0,45	0,55	0,25	0,25	0,35	0,4	0,5	0,55
Permitted isalignme	Radial misalignment ⁵⁾	with sleeve 1	ΔK_{rH}	[mm]	1,0	1,2	1,5	1,8	2,1	2,2	1,2	1,25	1,35	1,7	2	2,6
err sali	misalignment	with special sleeve	ΔK_{rH}	[mm]				Ple	ase co	ntact t	he mar	nufactu	irer.			
<u> </u>	\Box Ξ Angular misalignment per disk pack ΔK_{w} [°]		[°]	1,0	1,0	1,0	1,0	1,0	1,0	0,5	0,5	0,5	0,5	0,5	0,5	
Torsi	onal spring rigi	dity disk pack	C _{T LP}	[10 ³ Nm/rad]	145	280	301	748	1135	1920	3000	3480	11900	20600	30150	46800

1) Valid for changing load direction and max. permitted shaft misalignments.

2) Valid for constant load direction, max. load cycles $\leq 10^{5}$.

3) Not valid for coupling with special sleeve.

6) Only permitted as a static or virtually static value.


mayr®

⁴⁾ The permitted misalignments must not simultaneously reach their max. value.5) The values refer to couplings with 2 disk packs.

16

Modular Structure

Compact and Robust Torque Measurement Coupling

- Integrated into tried and tested backlash-free shaft misalignment compensation couplings
- Simple electrical and mechanical installation
- Robust and reliable
 machine element
- Completely maintenance-free

Application fields

- Process control
- Quality management
- Machine monitoring
- Test stands

Rotary signal transmitter

- Takes over energy and signal transmission
- Can be added radially
- Completely maintenance
 and wear-free

ROBA®-DS

- Compensation of shaft misalignments
- High torsional rigidity
- High permitted alternating torques
- High flexibility with reference to hub/shaft connection

Extension sensor

- Torque measurement via strain gauge
- Torque-proportional output signal

Technical Dat	a and Main Dimensions				Size	
Technical Dat	a and Main Dimensions			16	40	160
Nominal torque ¹) 2)	T _{KN}	[Nm]	190	450	1600
Peak torque 3)		Τ _{κs}	[Nm]	285	675	2400
	minimum hub bore	$d_{\rm Rmin}$	[mm]	20	25	40
Clamping ring hub	maximum hub bore	d _{R max}	[mm]	35	45	80
	maximum speed	n _{max}	[rpm]	9500	7000	4300
	Length Measurement coupling		[mm]	178,2	230,8	329,2
.	perm. axial displacement 5) 6)	ΔK_a	[mm]	0,8	1,0	1,7
Permitted misalignments ⁴⁾	perm. angular misalignment 7)	ΔK_w	[mm]	0,7	0,7	0,7
misalignments	perm. radial misalignment ⁵⁾	ΔK_r	[mm]	1,1	1,3	1,8
Spring	total torsional stiffness		[Nm/rad]	36200	114300	585000
stiffnesses	angular spring stiffness 7)		[Nm/rad]	229	298	1990

Technical Data for measuring system

-	-
Supply voltage	24 VDC (±5 %)
Max. current consumption	0,11 A
Measuring signal output (dependent on rotational direction, 5 V refers to $\rm T_{\rm KN}$	0 ±5 V
Nominal temperature range	0 +70 °C
Temperature drift zero point	0,04 % / K
Temperature drift measurement value	0,03 % / K

1) Other torques and construction sizes available on request.

2) Valid for changing load direction as well as max. permitted shaft misalignment.

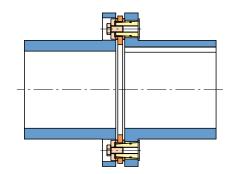
3) Valid for constant load direction, max. load cycles $\leq 10^5$.

4) The permitted misalignments may not simultaneously reach their maximum values.

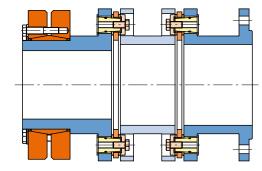
Technical Data for measuring system

Band	01 kHz (-3 dB)
Max. data transmission distance	3 mm
Protection	IP 20
Max. dyn. load capability	100 % of T _{KN}
Connection	Sub-D connector, 9-pole
Permitted speed	0 - n _{max}
Max. total errors	1 % of T _{кN}

5) The values refer to couplings with 2 disk packs.


6) Only permitted as a static or virtually static value.

7) The values refer to 1 disk pack.


- Low screw tightening torques
- Can be installed / de-installed radially
- Easy and quick installation / de-installation
- No hydraulic installation tools required; can be installed with a torque wrench
- Backlash-free torque transmission
- FEM-optimized disk shape
- High torsional rigidity
- High performance density
- Compensation of axial, angular and radial misalignments
- Wear and maintenance-free
- High flexibility through customer-specific hubs and sleeves

Design Examples

Single-jointed coupling with key hubs

Double-jointed coupling with shrink disk hub and flange

The design of the hubs and sleeves is carried out according to the customers requirements.

Technical De	ta Dimonoiona			Size								
Technical Da	Technical Data, Dimensions				3300	5000	7300	11000				
Alternating torq	ue ¹⁾	Τ _{κw}	[Nm]	14700	22000	33300	48700	73300				
Nominal torque ²⁾		Τ _{κΝ}	[Nm]	22000	33000	50000	73000	110000				
Peak torque ³⁾		Τ _{κs}	[Nm]	44000	66000	100000	146000	220000				
Outer diameter			[mm]	290	332	378	431	492				
Maximum speed [rpm]			3600	3100	2700	2400	2100					
	perm. axial displacement 5)	ΔK_a	[mm]	1,6	1,7	2,1	2,3	2,3				
Permitted ⁴⁾ misalignments	perm. radial misalignment with special sleeve	$\Delta K_{\rm rH}$	[mm]	please contact the manufacturer								
	perm. angular misalignment per disk pack	ΔK_{w}	[°]	0,4	0,4	0,4	0,4	0,4				

1) Valid for changing load direction as well as for max. permitted

shaft misalignment.2) Valid for constant load direction as well as for max. permitted shaft misalignment.

3) Valid for constant load direction, max. load cycles $\leq 10^5$.

 The permitted misalignments may not simultaneously reach their maximum values.

5) The values refer to couplings with 2 disk packs.

ROBA®-DS Wind power module

The *mayr*[®] company's decades of experience in shaft couplings and overload systems for all areas of mechanical engineering forms a strong basis for our wind power module. The wind power module has the following characteristics:

Safe overload protection

An integrated ROBA[®]-slip bushing produced from a speciallydeveloped bushing material ensures reliable overload protection against short-circuit torques due to its minimal torque tolerance.

• Electrical insulation

The electrical insulation through the sleeve made of glass fibre-reinforced plastic prevents damage to bearings and toothing.

• Compensation of shaft misalignments

Specially-developed rustproof steel disks allow compensation of extremely high axial, radial and angular shaft misalignments. This means that only low restoring forces are generated.

Integrated brake disk

A brake disk can be integrated into the wind power module according to customer-specific requirements.

Ease of installation

The disk packs and the intermediate sleeve can be mounted and de-installed radially without axial displacement of the hub being required.

It is possible to install the disk packs with low tightening torques by using special clamping nuts.

Headquarters

Chr. Mayr GmbH + Co. KG Eichenstrasse 1, D-87665 Mauerstetten Tel.: 0 83 41/8 04-0, Fax: 0 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Bavaria

Kamen

Eichenstrasse 1

87665 Mauerstetten

Tel.: 0 83 41/80 41 04

Fax: 0.83 41/80 44 23

Lünener Strasse 211

Tel.: 0 23 07/23 63 85

Fax: 0 23 07/24 26 74

Mayr Transmissions Ltd.

Keighley, BD21 4LZ

Tel.: 0 15 35/66 39 00

Fax: 0 15 35/66 32 61

Mayr Kupplungen AG

Tobeläckerstrasse 11

Tel.: 0 52/6 74 08 70

Fax: 0 52/6 74 08 75

8212 Neuhausen am Rheinfall

sales@mayr.co.uk

Switzerland

info@mayr.ch

Valley Road, Business Park

59174 Kamen

Great Britain

West Yorkshire

Service Germany

Baden-Württemberg Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0 Fax: 07 11/45 96 01 10

Hagen Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0 Fax: 0 23 31/78 03 25

Branch office

China

Mayr Zhangjiagang Power Transmission Co., Ltd. Changxing Road No. 16, 215600 Zhangjiagang Tel.: 05 12/58 91-75 65 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30 Fax: 00 65/65 60 10 00 info@mayr.com.sg

Representatives

Australia

Transmission Australia Pty. Ltd. 22 Corporate Ave. 3178 Rowville, Victoria Australien Tel.: 0 39/7 55 44 44 Fax: 0 39/7 55 44 11 info@transaus.com.au

South Africa

Torque Transfer Private Bag 9 Elandsfonstein 1406 Tel.: 0 11/8 99 00 00 Fax: 0 11/8 99 65 74 torque@bearings.co.za

China

Mavr Power Transmission Co., Ltd. Shanghai Representative Office Room 2206, No. 888 Yishan Road 200233 Shanghai, VR China Tel.: 0 21/64 32 01 60 Fax: 0 21/64 57 56 21 Trump.feng@mayr.de

South Korea

Mayr Korea Co. Ltd. Room No.1002, 10th floor, Nex Zone, SK TECHNOPARK, 77-1, SungSan-Dong, SungSan-Gu, Changwon, Korea Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25 info@mayrkorea.com

Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

Chemnitz

North Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78

France Mayr France S.A. Z.A.L. du Minopole BP 16 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA Mayr Corporation 4 North Street Waldwick NJ 07463 Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

National Engineering

Bhosari Pune 411026

Tel.: 0 20/27 13 00 29

Fax: 0 20/27 13 02 29

German Tech Auto Co., Ltd.

No. 28, Fenggong Zhong Road,

Taichung City 429, Taiwan R.O.C.

nenco@nenco.org

Shengang Dist.,

Tel.: 04/25 15 05 66

Fax: 04/25 15 24 13

abby@zfgta.com.tw

Company (NENCO)

J-225, M.I.D.C.

India

Taiwan

Franken

Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Rhine-Main

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Italv

Mayr Italia S.r.l. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0 49/8 79 10 20 Fax: 0 49/8 79 10 22 info@mayr-italia.it

Japan

MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 106-8641 Tel.: 03/35 86-41 41 Fax: 03/32 24 24 10 k.goto@matsui-corp.co.jp

S

14/12/2011

Machine tools

Applications in China Dynamic Power Transmission Co., Ltd. Block 5th, No. 1699, Songze Road, **Xujing Industrial Zone** 201702 Shanghai, China Tel.: 021/59883978 Fax: 021/59883979 dtcshanghai@online.sh.cn

More representatives:

Austria, Benelux States, Brazil, Canada, Czech Republic, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Malaysia, New Zealand, Norway, Philippines, Poland, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet.

